Skip to main content

How 3D Printing Actually Works?

 The concept of 3D printing is by no means new, however. Chuck Hull invented and patented stereolithography (also known as solid imaging) in the mid-1980s, when he founded 3D Systems, Inc. Since then, advances in the technology have been (and continue to be) made, including the size of the printers themselves, the materials they can use and more.
But how do 3D printers actually work? How can something that looks like our household printer or office photocopier create complex, solid objects in a matter of hours?

Designing an Idea


CAD Design
It all starts with a concept. The first stage of 3D printing is laying out an original idea with digital modeling — that is, with computer aided design (CAD) or animation modeling software.
Whichever program you choose, you're able to create a virtual blueprint of the object you want to print. The program then divides the object into digital cross-sections so the printer is able to build it layer by layer. The cross-sections essentially act as guides for the printer, so that the object is the exact size and shape you want. Both CAD and animation modeling software are WYSIWYG graphics editors — "what you see is what you get."
If you're not particularly design-inclined, you can purchase, download or request ready-made designs from sites like Shapeways, Sculpteo or Thingiverse.
Once you have a completed design, you send it to the 3D printer with the standard file extension .STL (for "stereolithography" or "Standard Tessellation Language"). STL files contain three-dimensional polygons that are sliced up so the printer can easily digest its information.

The 3D Printing Process

 

Now for the fun part. The first thing to note is that 3D printing is characterized as "additive" manufacturing, which means that a solid, three-dimensional object is constructed by adding material in layers. This is in contrast to regular "subtractive" manufacturing, through which an object is constructed by cutting (or "machining") raw material into a desired shape.
After the finished design file is sent to the 3D printer, you choose a specific material. This, depending on the printer, can be rubber, plastics, paper, polyurethane-like materials, metals and more.
Printer processes vary, but the material is usually sprayed, squeezed or otherwise transferred from the printer onto a platform. One printer in particular, the Makerbot Replicator 2, has a renewable bioplastic spooled in the back of the device (almost like string). When the printer is told to print something, it pulls the bioplastic filament through a tube and into an extruder, which heats it up and deposits it through a small hole and onto the build plate.
Then, a 3D printer makes passes (much like an inkjet printer) over the platform, depositing layer on top of layer of material to create the finished product (look closely — you can see the layers). This can take several hours or days depending on the size and complexity of the object. The average 3D-printed layer is approximately 100 microns (or micrometers), which is equivalent to 0.1 millimeters. Some printers, like the Objet Connex, can even deposit layers as thin as 16 microns.
Throughout the process, the different layers are automatically fused to create a single three-dimensional object in a dots per inch (DPI) resolution.

Pushing Innovation


KamerMaker
It's clear that 3D printing has the potential to transform several industries. Take the health field — medical professionals have used 3D printing to create hearing aids, custom leg braces and even a titanium jaw.
Last year, a team of researchers, engineers and dentists created the world's first prosthetic beak for a wounded bald eagle. NASA has tested 3D printers that will let Mars-bound astronauts print what they need as they travel.
Creating 3D-printed meat could fill the human need for protein while having less of an impact on the environment. The KamerMaker (pictured above) is a 3D printer large enough to print entire rooms.
These innovations could have a profound effect on the world, but the 3D printing industry does have at least one drawback — price. Smaller printers, designed for printing toys and other small gadgets, can be as little as $1,000, but the larger, more professional models can cost anywhere from $14,900 to $59,000. And the really advanced, heavy duty models? Those can set you back more than $600,000.
Other cons include the controversies of 3D-printed guns and the threat of copyright infringement.
Nonetheless, there's currently a huge market for 3D printing — $1.7 billion to be exact. And that number is expected to reach $3.7 billion by 2015.
Could 3D printing eventually change the world and even make mass manufacturing obsolete? We'll have to wait and see.
Images courtesy of Flickr; MakerBot Industries, ArcBiotics, Faberdashery

Comments

Popular posts from this blog

LG’s first flexible OLED phone due before the year is out

LG plans to launch a flexible OLED smartphone before the end of the year, the company’s VP of mobile has confirmed, though it’s unclear to what extent the work-in-progress handset will actually flex. The OLED panel in question is the handiwork of LG Display according to VP of LG mobile Yoon Bu-hyun, the WSJ  reports, with the proposed device set to launch sometime in Q4. LG Display’s work on flexible OLEDs has been underway for some time, though the company’s efforts have perhaps been overshadowed somewhat by rival Samsung’s YOUM development. Last year, according to a Korea Times report, LG Display was preparing for
Flexible displays are the Future of IT Industry! A part from 4k and smart home appliances, the CES 2013 saw a lot of attention being drawn towards bendable, flexible displays. The elasticised display idea isn’t something new as we have seen hoards of device concepts being crafted around flexible, bendable and even foldable displays. These concept devices give us a futuristic feel, be it a flexible phone to be worn around the wrist or a phone that opens up to turn into a tablet or PSP-like device. But how far is this future? Nokia has been toying with the idea ever since we remember. The technology sounds very fascinating and the possibilities and the extent to which bendable displays could be used are vast and leave us spellbound. However, these have always been concepts and we haven’t seen any device materialise in the real world. There have been several technologies that were conceived in these years and all have been put to their practical use. But the bendable d

Xarius: Charge Your Mobile From Air

Xarius is a portable energy generator that allows to charge electrical appliances by the use of windpower in areas without electricity. Its lightweight and compact design makes the wind turbine to a perfect companion on backpacking trips with little luggage. It is composed of a foldable three-wing-system and an internal energy generator. The integrated rope makes it easy to adapt to any environment.Hooks are attached to both of its ends to tighten the rope and open the wings at the same time using the resulting tension. For convenient charging the battery is permanently installed, so that the electrical device can be charged inside the tent. The LED on the hook shows the current charge of battery. The pulsating orange indicates that the wind turbine has to recharge. Even at low wind speeds the blades begin to rotate autonomously.