Skip to main content

NASA Laser Breaks Space Communications Record By Shooting laser at Moon

 NASA has set a new record for communication in space, beaming information to and from a probe named LADEE that is currently flying around the moon 380,000 kilometers away. Aboard LADEE is the Lunar Laser Communication Demonstration (LLCD), which achieved super-fast download speeds of 622 megabits per second (Mbps) and an upload rate of 20 Mbps. In comparison, the internet at WIRED’s office in San Francisco gets download rates of 75 Mbps and uploads at 50 Mbps. NASA’s typical communications with the moon are about five times slower than what LLCD provided. Until now, NASA has used radio waves to communicate with its spacecraft out in the solar system. As a probe gets farther away, you need more power to transmit a signal. Earth-based receiving dishes have to be bigger, too, so that NASA’s most-distant probe, Voyager 1, relies on a 70-meter antenna to be heard. LLCD relies on three ground-based terminals at telescopes in New Mexico, California, and Spain to communicate.
The agency is currently interested in creating better laser-based communication relays. With a concentrated beam of light, a spacecraft could send data at much faster rates that could carry higher resolution images and transmit 3-D videos from deep space. Of course, the method is challenging because it requires very high precision. If the skinny laser beam doesn’t exactly hit its target over a ridiculously far dist ance, it will lead to dropped calls and no communication. LLCD also has a slower transmission rate when the moon is on the horizon — and the signal has to travel through a greater amount of interfering atmosphere — than when it is directly overhead.
LLCD is actually a precursor to a larger and even more capable project, the Laser Communications Relay Demonstration (LCRD), which will further test the technology and is expected to launch in 2017. One day, such communication systems could be part of a fast interplanetary internet that will beam data around the solar system.

Comments

Popular posts from this blog

LG’s first flexible OLED phone due before the year is out

LG plans to launch a flexible OLED smartphone before the end of the year, the company’s VP of mobile has confirmed, though it’s unclear to what extent the work-in-progress handset will actually flex. The OLED panel in question is the handiwork of LG Display according to VP of LG mobile Yoon Bu-hyun, the WSJ  reports, with the proposed device set to launch sometime in Q4. LG Display’s work on flexible OLEDs has been underway for some time, though the company’s efforts have perhaps been overshadowed somewhat by rival Samsung’s YOUM development. Last year, according to a Korea Times report, LG Display was preparing for
Flexible displays are the Future of IT Industry! A part from 4k and smart home appliances, the CES 2013 saw a lot of attention being drawn towards bendable, flexible displays. The elasticised display idea isn’t something new as we have seen hoards of device concepts being crafted around flexible, bendable and even foldable displays. These concept devices give us a futuristic feel, be it a flexible phone to be worn around the wrist or a phone that opens up to turn into a tablet or PSP-like device. But how far is this future? Nokia has been toying with the idea ever since we remember. The technology sounds very fascinating and the possibilities and the extent to which bendable displays could be used are vast and leave us spellbound. However, these have always been concepts and we haven’t seen any device materialise in the real world. There have been several technologies that were conceived in these years and all have been put to their practical use. But the bendable d

Xarius: Charge Your Mobile From Air

Xarius is a portable energy generator that allows to charge electrical appliances by the use of windpower in areas without electricity. Its lightweight and compact design makes the wind turbine to a perfect companion on backpacking trips with little luggage. It is composed of a foldable three-wing-system and an internal energy generator. The integrated rope makes it easy to adapt to any environment.Hooks are attached to both of its ends to tighten the rope and open the wings at the same time using the resulting tension. For convenient charging the battery is permanently installed, so that the electrical device can be charged inside the tent. The LED on the hook shows the current charge of battery. The pulsating orange indicates that the wind turbine has to recharge. Even at low wind speeds the blades begin to rotate autonomously.