Skip to main content

Mutated Virus Helps Build a Better Battery

By unleashing a genetically modified virus onto microscopic electrode wires, researchers from MIT have shown that the performance of lithium-air batteries can be significantly improved -- a remarkable breakthrough that could revolutionize the way our electric devices are powered. Indeed, lithium-air batteries have generated considerable buzz over the years because of the way they can increase power without having to increase weight, an attribute that could lead to electric cars with much greater driving range. But engineers have struggled to to create the durable materials required for the batteries' electrodes, and increase the number of charging-cycles the batteries can withstand.

To overcome these limitations, researchers from MIT demonstrated that by adding bioengineered viruses to nanowires during the production stage -- tiny electrode wires about the width of a red blood cell -- some of these problems could be alleviated.
This virus, called M13, works by increasing the surface area of the wire, which in turn increases the area where electrochemical activity takes place when batteries are charged or discharged.
In a process similar to how an abalone pulls calcium from seawater to grow its shell, the nanowires, with the help of the M13 virus, pulls molecules of metal from room-temperature water, which the virus then binds into specific structural shapes. Specifically, the viruses produce manganese oxide wires -- and they have the rough, spiky surface required for the desired increase in surface area.
The final part of the process involves adding a small amount of metal, namely palladium, to increase the electrical conductivity of the nano wires.
Taken together, these modifications show that it may soon be possible to create a fully functional battery with an energy density that's two to three times greater than today's best lithium-air batteries -- the energy density being the amount of energy that can be stored for a given weight.

Comments

Popular posts from this blog

LG’s first flexible OLED phone due before the year is out

LG plans to launch a flexible OLED smartphone before the end of the year, the company’s VP of mobile has confirmed, though it’s unclear to what extent the work-in-progress handset will actually flex. The OLED panel in question is the handiwork of LG Display according to VP of LG mobile Yoon Bu-hyun, the WSJ  reports, with the proposed device set to launch sometime in Q4. LG Display’s work on flexible OLEDs has been underway for some time, though the company’s efforts have perhaps been overshadowed somewhat by rival Samsung’s YOUM development. Last year, according to a Korea Times report, LG Display was preparing for

Syrian Electronic Army claims credit for CBS Twitter accounts hack

Yesterday, several of CBS ’s Twitter accounts were hacked, including its main account, and its accounts for 60 Minutes, 48 Hours, and CBS Denver. The hackers got into the account and tweeted a series of things relating to President Obama and the United States being in cahoots with Al-Qaeda . The tweets also had links that led users to malware-infested sites. While CBS was able to regain access to its accounts, it was unable to figure out who was behind the attacks, until now. The Syrian Electronic Army , the same group that hacked 3 of the BBC’s Twitter accounts, claimed

Can Technology Do a Better Job of Finding Bombs?

 With the horrifying images of the Boston Marathon bombing still much too fresh in our minds, and with citywide marathons coming up this weekend in London, Hamburg, and Salt Lake City , law enforcement officers and citizens everywhere are asking how to prevent the tragedy from being repeated. As Columbia University School of International and Public Affairs adjunct professor Abraham Wagner observed last year, on the 11th anniversary of 9/11, there’s “no magic bullet o